- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Kwon, Yonghyun (3)
-
Cho, In Ho (2)
-
Yang, Yicheng (2)
-
Chapagain, Ashish (1)
-
Kim, Jae Kwang (1)
-
Kim, Jae kwang (1)
-
Kim, Jae-Kwang (1)
-
Park, Junyong (1)
-
Qiu, Yumou (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 30, 2026
-
Yang, Yicheng; Kwon, Yonghyun; Kim, Jae Kwang; Cho, In Ho (, IEEE Transactions on Knowledge and Data Engineering)
-
Cho, In Ho; Kim, Jae-Kwang; Yang, Yicheng; Kwon, Yonghyun; Chapagain, Ashish (, International Conference on Computer Science and Information Technology)Machine learning (ML) advancements hinge upon data - the vital ingredient for training. Statistically-curing the missing data is called imputation, and there are many imputation theories and tools. Butthey often require difficult statistical and/or discipline-specific assumptions, lacking general tools capable of curing large data. Fractional hot deck imputation (FHDI) can cure data by filling nonresponses with observed values (thus, hot-deck) without resorting to assumptions. The review paper summarizes how FHDI evolves to ultra dataoriented parallel version (UP-FHDI).Here, ultra data have concurrently large instances (bign) and high dimensionality (big-p). The evolution is made possible with specialized parallelism and fast variance estimation technique. Validations with scientific and engineering data confirm that UP-FHDI can cure ultra data(p >10,000& n > 1M), and the cured data sets can improve the prediction accuracy of subsequent ML. The evolved FHDI will help promote reliable ML with cured big data.more » « less
An official website of the United States government
